1 Basic probability theory

1.1 Random variables and distributions

Suppose X is an observable which can be measured in an experiment. Because of lack of information
let us assume that we cannot definitely predict the outcome of an experiment measuring X. Instead,
let us say that we can only give the probability that the variable X will take any specific value or
some value within a range of possible values. Then we say that X is a random variable. The
outcome of the experiment can be described by a probability distribution P(X).

Examples of random variables and probability distributions:

1. A coin tossing experiment — we toss an un-biased coin whose two faces have the values +1
(for head) and —1 (for tail) written on them . The outcome X can take two possible values
X =1or X =—1. In this case P(X) is given by:

P(X =+1)=1/2
P(X=-1)=1/2.

2. A dice rolling experiment — we throw a dice with six faces with the values 1, 2, 3,4, 5, 6 written
respectively on each of them. In this case the allowed values of X are the six numbers 1 — 6
and P(X) is given by:

P(X=i)=1/6 fori=1,2,...,6.

3. Tossing N number of coins — we toss N coins and measure the number of heads obtained.
The outcome X can take values 0,1,..., N and P(X) is given by the Binomial distribution

N! 1

PX =n)= nl(N —n)l2N (1)

4. Number of air molecules in a small volume. Let the mean density of air in a room be p and
let us consider a volume v which is a small fraction of the total volume V' of the room. The
mean number of molecules in v will then be A = pv = Nv/V, where N is the total number
of molecules in the room. However if we make a measurement we will not get exactly the
value A. The measured number of air molecules will be a random variable and in this case X
can take values n = 0,1,2,..., N. If we assume that the air density is low and therefore the
molecules hardly interact then the distribution is again given by the Binomial distribution

N! v\ v\N-n
PX=n) = () (1-3) 2
(X =n) =N =i \v v @)
For large N and large V' with p = N/V kept finite, this reduces to the Poisson distribution
A'IL _
P(X =n)= e A



D.

The number of photons hitting a telescope lens in a time interval 7 is also given by the
Poisson distribution, now with A = r7, where r is the rate of arrival of the photons.

Time taken for a radioactive atom to decay. The time X = ¢ can take any value between 0
and oo. If the rate of decay is r then P(t) is given by the exponential distribution

P(t) dt = Prob(t < X <t+dt) =re "dt .
Note that P(t) is now a probability density and has the dimension of 1/time.

x—component of the velocity v = (v,, vy, v,) of an air molecule. The velocity component v,
can take any values in the range (—oo,00) and P(v,) is given by the Maxwell distribution

P(v,) = ( —o v e~ mve/2kpT
* QTFkBT .

The Maxwell distribution is an example of a Gaussian or a Normal distribution whose
general form, for a variable X is:

2mo2

1\ 2 2 ) o
P<X>—( ) e~ (X220 3)

where p is the mean value of the random variable and ¢ is the root-mean-square deviation
around the mean value. Note that here X is a continuous variable and P(X)dX is the
probability (dimensionless number) of a measurement yielding a value between X and X +dX.

Experimental determination of probability distributions: We have seen in the above

examples that a random variable X can either take a discrete set of values or a continuous range

of values. Let us see how we can determine the distribution function P(X) for these two cases in

an experiment (or simulation).

Case I — Discrete X (only integer values allowed)

Perform the experiment to measure X a large number (say R) of times.

Every measurement will yield a value. Count the number of times we get any particular value.
Suppose X = n occurs R,, times.

P(X:n):}%EEOJZL.

In an experiment the larger we take R the better our answer will get.

Case IT — Continuous X (all real values allowed)

Perform the experiment to measure X a large number (say R) of times.

Every measurement will yield a value. Count the number of times we get a value of X in the
range x to x + Ax, where Az is chosen small. Suppose this occurs R, number of times.
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Figure 1: Here we show plots of the Binomial distribution, the Poisson distribution and the Gaussian
distribution.
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Figure 2: Here we show plots of the Binomial distribution, the Poisson distribution and the Gaussian
distribution.



e Then

R,
Prob(z < X < x + Ax) :}%im =
—00

and

Plz) = Ahmo Prob(x < )A( <z + Azx) .
T— X

e In an experiment we need to take R as large as possible and Ax as small as possible.

1.2 Properties of probability distributions

Case I — Discrete X = n

1. Positivity and normalization.

)
2
v
o

n=—oo

2. Two important properties of a random variable are its mean value and the mean square

deviation from the mean value. These are respectively denoted by p and o2 and defined as:

po= = 0 PO
ot = (= pP) =3 (0= ) Pln)

3. We can define the moments of the distribution:

M, = (n°) = Z n® P(n) fors=1,2,..

n=-—oo

Prob: Verify the above properties for the binomial distribution and find ;1 and o.
Prob: Show that 0% = My — M}.

Case II — continuous X =z

1. Positivity and normalization.
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=
v
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2. The mean and mean square deviation are given by

po= (x)—/oodxxP(x)

7 = (o= [ do oo n?P).
3. The moments of the distribution are defined as:
M = (z°) = / dx z° P(x) for s=1,2,.. (4)

Prob: Verify the above properties for the Maxwell distribution and find ¢ and o.

1.3 Multivariate distributions, joint and conditional distributions

In general we can consider more than one random variable. Our observables can be a set of
N random variables (X7, Xs,..., Xy) and we can ask for their joint probability distribution
P(Xy, Xo, ..., XN).

Examples:

1. Tossing two independent coins simultaneously — the first can be in two possible states
X1 = 41 or X; = —1 and the second coin can also be in two possible states Xs = +1 or
Xy = —1. The joint distribution P(X7, X5) is given by:

P(+1,41) = 1/4
P(-1,41) = 1/4
P(+1,-1) = 1/4
P(-1,-1) = 1/4. (5)

2. All the three components of the velocity v = (v, v,,v.) of an air molecule. In this case we
have three random variables X; = v,, Xy = v,, X3 = v, and their joint distribution is given
by:

)

3/2
m ) e—mv2/2kBT

where v? = v2 + UZ + v2. In this case P(v)dv,dv,dv, gives the probability that the compo-
nents of the measured velocity lie within the ranges (v,, v, + dv,), (vy, v, + dvy), (v,, v, + dv,)

respectively.



Independent random variables: The set of random variables (X, Xs,..., Xy) are said to
be independent if their joint distribution can be written in the following product form:

P(Xy, Xs, ..., XN) = PI(X1)P(X2) ... PNn(XN)

where P; denotes the probability distribution of the " variable. If the individual distributions
are all identical, i.e P, = P,... = Py then the random variables are said to be #id (independent-
identically-distributed).

Prob: Verify that in e.g (1) above X and X, are iid variables since P(X7, X5) = P(X1)P(X3).
In e.g (2), verify that v,,v, and v, are 7d variables since P(v,, vy, v,) = P(v,;)P(v,)P(v,).

For simplicity let us now stick to the case when we have two random variables (X7, X5) with a
joint distribution P(X7, X5). In general the variables can be correlated instead of being indepen-
dent and in that case P(Xy, X3) # P1(X;)P2(X2). We define the conditional probability P¢(X3|X;)
of X5 given X through the relation:

P(X1, X5)
PXo|lXy) = ——F—7- . 6
( 2| 1) Pl(Xl) ( )
Similarly we can define
P(X1, X5)
PX|Xy) = ————=
( 1| 2) PQ(XQ) (7>

From the definition of the conditional probability we get Bayes’ theorem

PC(X5|X1)Pi(X,) = PY(X1]| X2) Pa(X3) .

Understanding the definition of conditional probability: Consider an experiment with
two coins which are connected to each other by a rod. We put the coins in a box, shake it and
look at the values X; and X5 take. Let us do ths experiment R number of times. There are four
possible outcomes and let their frequencies be:

occurs Ry, times ,

)

(X1 =-1,Xy=+1) occurs R_, times,
) occurs Ry_ times ,
)

occurs R__ times ,

where R = R; + Ry + R3 + R;. As we have seen earlier we can determine various probabilities
accurately if we make R large. Suppose we want to find the probabilty that X; = +1 given we
know that Xy = —1. Then clearly (for R — 00):

R._
PXi=41X=-1) = F—p
+7 -
 R/R  PXy=+41X,=-1)
(Re_+R__)/R P(Xy = —1) ’
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which agrees with our previous definition.
If the rod connecting the coins is very rigid (with same faces pointing in the same direction),
then X; and X, are strongly correlated and we would then have

P(Xl:+1’X2:+1):P(X1:_17X2:_1):1/27
P(Xl:+17X2:_1):P<X1:_17X2:+1):0,

Clearly in this case P(X1, Xs) # P1(X1)P(X2). On the other hand if the rod is very flexible then
P(X1, X5) is given by Eq. (5) and X;, X5 are un-correlated.

1.4 Characteristic functions

Consider a continuous random variable with a distribution P(x). It’s characteristic function is
defined by

Pk) = /_ " dzep() (8)

which is thus just the Fourier transform of P(z). The characteristic function P has the same
information as P(z), which can be obtained from it by an inverse Fourier transform. Thus

P(z) L /_ h dke=**P(k) . (9)

T or o

If we use the expansion e** = "% (ikz)®/s! in Eq. (8) then we get:

By = S U / " dertP(a) |

s=0 o0
> (’S) M, (10)
s=0 ’

where M, are the moments defined in Eq. (4) . Comparing this series with the Taylor series
expansion of P(k) about k = 0:

~ = kS d*P(k)
Py =S"% |
() ; sl dks k=0’
we immediately see that
d* P(k)
M, = (—i)* |
g s

Example: Consider the Gaussian distribution in Eq. (3) for the case p = 0. The characteristic

function is given by:

=~ & ; 1 2 2 21.2
o ikx —z?/20% __ _—0%k*/2
P(k) = / dzxe 7(2@1/206 =e :

o
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—a?k2/2

Using the expansion of e and comparing with Eq. (10) we get:

. B e (—k})ZSO'QS B e (Zk,)s
P =D =2 g M 1
5=0 s=0
Comparing the terms of the two series we then get
2s!
25 = 2551025 for s=0,1,...,

and all odd moments vanish.
1.5 Central limit theorem
Suppose we have a set of N continuous random variables (x,zs,...,zy). Each of the random

variable are chosen from the distribution p(z) which has a mean g and a mean square deviation
o%. Let us take the sum of these variables and denote it by y. Thus

y:le . (12)

Clearly y is also a random variable and it will have a distribution function P(y). How do we find
this distribution and how does it depend on the distribution p(z) ? The central limit theorem
states that if we take IV to be very large then the distribution of y has a simple form given by the
Gaussian distribution

1 2 2
— —(y—Nu)?/2No
PW) = Grnomiz® :
Proof:
Ply) :/ / doy. . dey Oy — (11 4+ 72+ -+ 2n)] Pla1)P(x2) .. Play) . (13)

We now use the follwoing representation of the Dirac-delta function:

1 [ <
o0y —a)= 27T/ dke~ k=)

o

in Eq. (13) to get

1 o0 . o0 o0 .
Ply) = o dke ™y / / dry ... dey e*@FRE TN b p(xs) . p(ey)
S —iky (1N
— o [ e
where p(k) = / dze*@p(x)

is the characteristic function of the distribution p(z). Now we write

k)N = exp[Nlogp(k)]
= exp[Nlog(1 + iku — k*My/2 + O(k*))]
= exp[N(ikp — k*0?/2 + O(k?))] .

9



Plugging this into Eq. (14) we note that for large N, the integral gets its contribution mainly from
small values of k. Hence it is alright to neglect O(k?) terms and we get:

™ —00
_ L w-vw2enet
(2rNo?)1/2 '

Some exact results that are valid for any N, not necessarily large.

e (y)=((r1+z24+23+ -+ 2N))
= (z1) + (@2) + (z3) + -+ (zn) = Np.

o ((y—=Nuw?) = {{(xr — p) + (w2 = p) + (w3 — ) + -+ + (an — W)
= (21 = )*) + (w2 = )*) + (23 — )*) + -+ + (25 — )?)
where we have used the fact that ((z; — p)(z, — p)) = ((x; — p)) {(z, — p)) =0 for I # n.

2 Random walks

History of the random walk problem: Karl Pearson introduced the term ”Random Walk”. He was
interested in describing the spatial/temporal evolutions of mosquito populations invading cleared
jungle regions. He found it too complex to model deterministically, so he conceptualized a simple
random model. Pearson posed his problem in Nature (27 July 1905) as follows:

A man starts from a point 0 and walks ¢ yards in a straight line; he then turns through any
angle whatever and walks another £ yards in a second straight line. He repeats this process n times.
I require the probability that after n of these stretches he is at a distance between r and r + dr
from his starting point.

The question was answered the following week by Lord Rayleigh, who pointed out the connec-
tion between this problem and an earlier paper of his published in 1830* concerned with sound
vibrations. Rayleigh pointed out that, for large values of n, the answer is given by:

2 —7‘2 TLZQ
P(r,n)dr:@e e dr

2.1 Random walk in one-dimension

Consider a walker on a one dimensional lattice. At every time step the walker tosses an unbiased
coin and moves to the left if it is a head and to the right if it is a tail. Thus for every step there are
2 possibilities and the walker chooses either of them with equal probability. After taking n steps
the walker can be anywhere between —n to n and we would like to know: what is the probability
P(X,n) that the walker is at some point X 7 We note that there are 2" distinct possible walks,

10



each of which occurs with the same probability. Out of these let us say T'(X,n) walks end up at
the point X. Then clearly

T(X,n)

(14)

We can find T'(X, n) as follows. For any given realization of the walk let ng be the number of right
steps and let ny, be the number of left steps. Then ng +ny, =n and ngp — ny = X.

Example: One possible realization of a 10—step walk is LRRLLRLLRL. In this case n =
10, ng =4, n;, =6 and X = —2. A different realization of the walk which leads to the same values
of n,ng,np, X is LLLLRRRRLL.

Clearly there are many possible ways of arranging the ng Rs’ and ny L’s and the number of

ways would give us 7'(X,n). This is a combinatorial problem whose answer is:

n!

T(X,n) = (15)

nR!nL! '
Prob: Check this formula for n = 4.

Now since ng = (n+ X)/2 and n;, = (n — X)/2 we therefore get, using Eq. (14) and Eq. (15),
n! 1

n+X'n—X|27'
2 2 7

P(X,n) = (16)

Prob: Check normalization: ) y_  P(X,n) = 1. Use the fact that (1/2+1/2)" = 1.

Now what we would eventually like to get is a “continuum description”, that is we want to look
at length scales much larger than the lattice spacing (say a) and time scales much larger than time
taken for each step (say 7). Let us try to get this.

For this we use Stirling’s approximation. This states that for large n we get n! ~ n"e "v/2mn.
This formula is infact very good even for n as small as 5; in that case 5! = 120 while the Stirling
approximation gives ~ 118.

Proof of Stirling’s approximation: One derivation of the Stirling formula is to use the
following result:

nl = / dr e "z" . (17)
0

Let us try to evaluate this integral by finding out where it takes its maximum value and then
approximating the integrand by a Gaussian around the maximum. We can write the integrand in
the form e™® 2" = e7**"1%e® = /@ here f(z) = —2 + nlogz . The point z* where f(z) and
therefore e/®) is maximum is given by the condition f’(z*) = 0 which gives z* = n. Expanding

around this point we get

f@) = FE) -
where f(z*) = —n+nlogn, [f"(z*)=-1/n. (18)

11



Using this in Eq. (17) we get

nl = / dre!®
0

~ 6 / T g @)
0

Q

@) / dp ol @) a=a")/2

o

" 27 1/2
— ef(ﬂc ) <_f//(x*)> _ efn+nlogn(2ﬂ_n)1/2 : (19)
Which is the Stirling formula.
QFED

Using Stirling’s formula in Eq. (16) we get:

n"e~"(2mn)/? 1
X X _nEX oo noX\I=X =X o n
(B55) 5 e T e () VA(RFE) T e 2 (2] 2 2

P(X,n) =

After simplification this reduces to

(27n)1/?
n+X

P(X,n)= — .
(Xm) 1+ X5 (1 - X" an(1 — X)12

We now consider X << n only or more precisely X < O(y/n). In this limit, we get

2 2
P(X,n) = (=)o . (20)
™
This is easiest to obtain by taking In P(X,n) and expanding. Now let 2 = Xa and ¢t = n7. Then

the probability density for the walker to be between x and x 4 dz is

p(z,t) = P(X,n)/(2a)
1 ~ st
= ar@zonet (1)

The reason we divide by 2a and not «a is because after n steps the walker can be located either on
even sites (if n is even) or on odd sites (n odd). Now defining the diffusion constant D = a?/(27)
we finally get

2

x

p(z,t) = (47rDt)1/2€_m

(22)
Prob: Check that [*_dx p(z,t) = 1. Also verify that (z) = 0 and (%) = 2Dt .

The moments (z) and (2?) can be obtained more directly. The position of the walker z(t) after
n =t/7 time steps is

z(t) =a Z & (23)
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where &; is +1 or —1 with equal probability (thus (§;) = 0) and & and ¢; are uncorrelated or
independent, which means that (£;¢;) = 0. Therefore

@(®) = a3 (&) =0

(@*(t)) = o Z (€:€5)

= a?(Q_(E) +)_(&&))
i=1 i#j
= a’n = 2[a®/(27)](nT) = 2Dt (24)
Prob: Write a Monte-carlo program to generate 1 — D random walks and verify the law (x?) =
2Dt.
Prob: Let & = 1 with probability p and —1 with probability ¢ = 1 — p. Find (x(¢)) and
(@2(t)) — (=())*.
Prob: Let z; = 2 with probability 1/2 and z; = —1 or 0 with probabilities 1/4 each. Find
(x(t)) and (2*(t)) — (2(1))*.

2.2 Random walk and the Diffusion equation

Another method to get Eq. (22) : Since a random walk is like diffusion of particles we expect
Eq. (22) to be the solution of the diffusion equation. Let us see how this comes about. As before,
P(X,n) is the probability that a particle is at the site X after n steps. It satisfies the following
equation

1
P(X7n+1):§[P(X+1,n)+P(X—1,n)} (25)
Subtract P(X,n) from both sides. We then get

P(X,n+1) = P(X,n) :% [ P(X 4 1,n) — 2P(X,n) + P(X — 1,n) ]

_ plat+7) —plet) o [ple+a,t) = 2p(a,t) +ple — a,t)]
T 27 a?
op(x,t) _  Ppla,t)
T o b O0x? (26)

which is the diffusion equation. Normally in the diffusion equation we have density of particles

p(x,t) instead of the probability density p(z,t). But they are simply related by p(x,t) = N p(z,t)
where N is the total number of diffusing particles.

Now Eq. (26) is a linear equation which can be easily solved by Fourier transforming. Solving
means: given an initial probability distribution p(z,t = 0) find p(x,t) at some later time ¢. Let us
solve for the initial condition p(z,t = 0) = §(z), which corresponds to the case when the particle
is initially located at the origin. Taking the Fourier transform

p(x,t) = / ﬁ(k,t)elkmdk7 ﬁ(l{%t) = / p(x,t)eilkmdl‘

00 2m —0o0

13



gives

/ D) ik gy, / — DE*p(k, )™ dk

e Ot oo

= aﬁg“t’ Y _ Dk 1)
= k1) = PPk, 0) — %e*’m (27)

Taking the inverse Fourier transformation we then get
plz,t) = % /Z e~ PRk g — Wlt)l/ge_fli . (28)

as before. Note that the diffusion equation can also be written in the following form:

op(x,t)  0J(x,t)
5 + o =0 where (29)

J(z,t) = —Da’g”f).

Higher dimensions: We can consider a random walk on a 2—dimensional, 3—dimensional
or in general a d—dimensional lattice and ask the same questions. The combinatorial approach
becomes difficult but we get the same diffusion equation which can again be solved quite easily.

To see that we do get the same equation, consider the 2—dimensional case, where a random
walker can move up, down, left or right with equal probabilities. Thus if at some time t = nr
the walker is at the point x = (x,y) then, at time ¢ 4+ 7, it can be at either of the 4 points
(x +a,y), (x—a,y), (x,y+a), (x,y —a). The probability of it being at any of these 4 points is
clearly 1/4. Let P(x,t) be the probability for the walker to be at x at time ¢. Then Eq. (25) gets
modified to

| P(x +a,y,t) + P(x —a,y,t) + P(x,y + a,t) + P(x,y —a,t) | . (30)

1=

Px,t+71)=

Subtracting P(x,t) from both sides we get:

P(th_'_T)_P(th) _ ﬁ[P(a:—i—a,y,t)—2P(x,y,t)+P(m—a,y,t)}
T 47 a?
a* [P(x,y + a,t) — 2P(x,y,t) + P(x,y — a,t)]
+ R
47 a?
op(x,t) I’p(x,t) | O?p(x,1)
o~ Pl Tam T | (31)

which is the 2—dimensional diffusion equation and we have defined D = a?/(47) . Similarly in
3—dimensions we get [with D = a?/(67)]

Op(x,t)
ot

= DV?P(x,1). (32)

14



To solve this we again Fourier transform

00 _ _ B - 1 o B
pxt) = [ et xais ) = o [ pbee i

o0 (277)3 —o00

Proceeding exactly as in the 1 — D case we get

> 1 7'2

_ 7.o—DE?t jik.x _ = _eTiDt
p(x7 t) = 7(271_)3 / dke e p(w, t)p(yv t)p(zv t) (47TDt)3/2€ 4

—00

(33)

The mean square distance traveled by the walker is (r?) = (z* +y*+ 2%) = 6Dt. We can verify this
directly. Since x(t) = a Y ;| &, therefore (x?) = a? """ (£?) = na®* = 6Dt. Note that the number
of walks of length n, from the origin to x is 6" P(x,t).

3 Langevin equations and Brownian motion

The random walk is basically described by the equation
Xn+1 = Xn + fn
where &, is uncorrelated noise with zero mean i.e

<£n> = O; <§n§m> = 5nm-
For continuous space and time we write, as usual, t = n7, * = X,,a and the above equation gives

dz(t) :
— =¢(t) with (34)

(€)= 0; (&)&(t) = 2Dd(t —1').

This is the Langevin equation describing diffusion. It is the equation of motion for a free Brownian

particle (a particle whose velocity is a random function of time). If we have a large number of such
particles then we have seen that their density obeys the diffusion equation which can be written in
the form
(9p(l’, t) + 8Jd,~ff(:x, t)
ot ox

- Op(x,t)
Jd,ff(l',t) =-D or .

Now consider a different situation where a large number of particles are moving with a deter-

=0 where

(35)

ministic (that is non-random) velocity. The equation of motion of each particle is then

dot) _
] (36)

In this case also we can define the density distribution of particles and ask the question: how does

the density change with time ? This is basically determined from the conservation of particles
which is given by the following continuity equation:
ap(x, t) i 8Jdm-ft(m, t)

ot ox
Jdrift(xat) :iUp(ZL‘,t) = f(x,t)p(x,t) (37)

=0 where
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Figure 3: Large number of colloidal particles inside a fluid.

Prob: Derive the continuity equation from the condition for conservation of particles which is
p(x,t)dr = p(2’,t')dz" where t’ =t +dt and 2’ = x4 dz. This is infact just the Liouville’s equation
in classical mechanics.

The Einstein fluctuation-dissipation relation: we will now use the previous results to derive a

formula which will enable us to make estimates of the diffusion constant D in real physical systems.

Consider a large number of colloidal particles inside a fluid as shown in Fig. (3). Each colloidal
particle is much larger than the fluid particles which constantly bombard it. The net effect of all
the forces imparted on the colloid by the fluid particles can effectively be described very accurately
by just two forces:

(i) A dissipative part: This is the viscous drag on the particle and is a deterministic force given
by

Fy=—z (38)

where v = —67na is the Stokes formula with a the particle radius and n the fluid viscosity.
(i) A fluctuating part: this is a random force with zero average and which is totally uncorrelated
in time, that is we take

Fy=a(t); (a(t)) =0 (a(t)a(t))) =2D'6(t —1'). (39)

What the fluctuation-dissipation theorem (or Einstein relation) tells us is that the two parts of
the forces mentioned above are related to each other. To see how this comes about, consider the
state when the colloidal particles have reached a steady state and are in thermal equilibrium at
some temperature 1. We know that because of gravity there will be a concentration gradient of
colloidal particles in the system and their density will vary as:

p(x) = p(z = 0)e 57, (40)

where m is mass of each particle. Also there will be two currents set up in the system:
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(i) a drift current: each colloidal particle is acted upon by two deterministic forces, one is the
drag force given by i and the other is gravity given by mg. In the steady state they are equal,
which means that the colloid attains a steady speed & = mg/~. This, from Eq. (37), implies a drift
current given by Jyipe = mgp(z) /7,

(ii) a diffusive current arising from the random forces: Jyrp = —Dag—f).

In the equilibrium state there is no net current of particles which means Jy;¢rr = Jyrife. Hence

But from Eq. (40) we get

Ip(x) mg )

or kg’

Comparing the two equations above we get the Einstein relation

kT
==

D (41)
Note that it relates the fluctuating (D) and dissipative (1) parts of the fluid forces acting on the
colloid. Later we will also determine the strength of the fluctuating force given by D’. Since
~v = 67na, everything on the right hand side of Eq. (41) is known, and we can then use it to
estimate the value of D.

Prob: Estimate the value of D for a colloid of size a = 1pum in water and in air. How far does
it travel in a minute? and in an hour?

3.1 Fokker-Planck equation for a Brownian particle in a potential

The full equation of motion for a Brownian particle moving inside a potential U(z) is given by:

mcz = —yv+ F(z)+ a(t) where
dU (z)
Flz) = -2
() o

(a(t))y =0; (a(®)a(t))y=2D"5(t—1).

If we are in the high viscosity limit (overdamped, low Reynolds number limit) it can be shown that
it is alright (for times ¢t >> m/v) to neglect inertial terms, namely the term on the left hand side
of the above equation. In that case we get

’yillf = F(z) + aft)
= LZ = F(z) +&(t)  where (42)
£(t) = ai” S (E(E(W) = 2D5(t — ), D=D/J7? |
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This is the Langevin equation of a Brownian particle in the overdamped limit. Using the Einstein
relation D = kgT'/y we see that D’ = vkgT.

If p(x,t) is the probabilty distribution of the particle then, as we saw in the previous section,
the probability current corresponding to this Langevin equation is:

J = Jaigf + Jarigt

F(x)

= Tp(x,t) — Dap(a?, t).

ox
Using the continuity equation dp/ot + 0.J/0x = 0, this then leads to the following Fokker-Planck
equation for p(z,t):

ot ox Er (43)

A systematic derivation of the Fokker-Planck equation: We now give a derivation of the
Fokker-Planck equation using the fact that the Langevin equation with d-correlated noise describes

Ip(z,t) _ 0 {Fix)p(:c,t)] +D{)2p(x,t)

a Markov process and hence we can write a evolution equation for the probability density — this
will be a generalization of Eq. (25) for the random walk. Let us assume that starting from point
z' at time ¢', the particle can make a transition of size Az that is chosen from a distribution
¢(Ax;2’,t"). Then we have:

p(z,t) = / dAz p(x — Az, t — At) ¢(Az;z — Az, t — At) .

We now do a Taylor-expansion of the function f(z — Az) = p(x — Az, t — At) ¢(Ax;x— At — At)
around the point x. We then get:

p(z,t) = i aa:n [p(m,t — At) /_OO dAx (zAz)" O(Ax;x, t — At) ]

o n!

-y ST (1)

n!

o0 an

= t— At
p(z, )+ nz_:l e
where we have used the fact that [ dAz ¢(Ax;z,t — At) = 1 and defined the moments of the
jump distribution ((Az)") = [77 dAz (Az)" ¢(Az;z,t — At) . As we will see, for our process

described by the Langevin equations, the coefficients D,,(x,t) = lima;,o((Ax)™)/(n!At) vanish for
n > 2. Hence we get

op(z,t) 0 0?
=——I[D —I[D : 4
o =~ Dupl, )] + 5 [Dapl, 1) (45)
For the overdamped Langevin equation described by Eq. (42) we have:
F t+At F
Az = a(t + At) — a(t) = ny)At +/ arety = ED A4 )
t
where v(t) is a Gaussian distributed number with zero mean and variance 2DA¢. Hence we get:
_ g (Ar)  F(z)
Dl_AlgloAt_ vy
o (A
D=l Toar =P

Hence we get the Fokker-Planck equation in Eq. (43).
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